EconPapers    
Economics at your fingertips  
 

Multiple seasonal cycles forecasting model: the Italian electricity demand

Mauro Bernardi and Lea Petrella

Statistical Methods & Applications, 2015, vol. 24, issue 4, 695 pages

Abstract: Forecasting energy load demand data based on high frequency time series has become of primary importance for energy suppliers in nowadays competitive electricity markets. In this work, we model the time series of Italian electricity consumption from 2004 to 2014 using an exponential smoothing approach. Data are observed hourly showing strong seasonal patterns at different frequencies as well as some calendar effects. We combine a parsimonious model representation of the intraday and intraweek cycles with an additional seasonal term that captures the monthly variability of the series. Irregular days, such as public holidays, are modelled separately by adding a specific exponential smoothing seasonal term. An additive ARMA error term is then introduced to lower the volatility of the estimated trend component and the residuals’ autocorrelation. The forecasting exercise demonstrates that the proposed model performs remarkably well, in terms of lower root mean squared error and mean absolute percentage error criteria, in both short term and medium term forecasting horizons. Copyright Springer-Verlag Berlin Heidelberg 2015

Keywords: Electricity demand forecasting; Exponential smoothing; Multiple seasonality; Single source of error models; C11; C22; C58; G32 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10260-015-0313-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:24:y:2015:i:4:p:671-695

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-015-0313-z

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:24:y:2015:i:4:p:671-695