Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomyopathy
Giulia Barbati () and
Alessio Farcomeni
Additional contact information
Giulia Barbati: Università di Trieste
Statistical Methods & Applications, 2018, vol. 27, issue 3, No 9, 545-557
Abstract:
Abstract We propose new time-dependent sensitivity, specificity, ROC curves and net reclassification indices that can take into account biomarkers or scores that are repeatedly measured at different time-points. Inference proceeds through inverse probability weighting and resampling. The newly proposed measures exploit the information contained in biomarkers measured at different visits, rather than using only the measurements at the first visits. The contribution is illustrated via simulations and an original application on patients affected by dilated cardiomiopathy. The aim is to evaluate if repeated binary measurements of right ventricular dysfunction bring additive prognostic information on mortality/urgent heart transplant. It is shown that taking into account the trajectory of the new biomarker improves risk classification, while the first measurement alone might not be sufficiently informative. The methods are implemented in an R package (longROC), freely available on CRAN.
Keywords: AUC; NRI; ROC; Prognostic scores (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-017-0410-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:27:y:2018:i:3:d:10.1007_s10260-017-0410-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-017-0410-2
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().