Improved joint modeling of longitudinal and survival data using a poisson regression approach
Yixiu Liu,
Mahmoud Torabi,
Xuekui Zhang and
Depeng Jiang ()
Additional contact information
Yixiu Liu: University of Manitoba
Mahmoud Torabi: University of Manitoba
Xuekui Zhang: University of Victoria
Depeng Jiang: University of Manitoba
Statistical Methods & Applications, 2025, vol. 34, issue 2, No 7, 325-344
Abstract:
Abstract Data of repeated measurements (longitudinal) and time-to-events (survival) are commonly recorded in studies. The joint model (JM) of longitudinal and survival data, which allows simultaneously analysis of the two types of outcomes, has been extensively discussed recently. JMs are computationally intensive due to large number of parameters and the complexity of fitting the survival submodel. The centerpiece of the survival submodel is the piecewise constant proportional hazard (PCPH). An alternative to PCPH for analysing survival data is the auxiliary Poisson regression model. However, the use of this approach in JMs has not been discussed. In this study, we propose using the auxiliary Poisson model as the survival part in a JM within a Bayesian framework. We conducted comprehensive simulation studies to assess the performance of our proposed method under various conditions and compared it to a published R package for JMs called JMbayes. Additionally, we used data from the Manitoba Follow-Up Study to illustrate the advantages and feasibility of our proposed method. The findings have showed that using the auxiliary Poisson approach as the survival submodel is a very promising method for jointly modeling longitudinal and survival data, as it helps decrease the computing burden.
Keywords: Joint model of longitudinal and survival data; Poisson regression model; Bayesian estimation; Computational efficient; Cox regression model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-025-00782-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:34:y:2025:i:2:d:10.1007_s10260-025-00782-4
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-025-00782-4
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().