EconPapers    
Economics at your fingertips  
 

A churn prediction model for prepaid customers in telecom using fuzzy classifiers

Muhammad Azeem (), Muhammad Usman () and A. C. M. Fong ()
Additional contact information
Muhammad Azeem: Shaheed Zulfikar Ali Bhutto Institute of Science and Technology
Muhammad Usman: Shaheed Zulfikar Ali Bhutto Institute of Science and Technology
A. C. M. Fong: Western Michigan University

Telecommunication Systems: Modelling, Analysis, Design and Management, 2017, vol. 66, issue 4, No 3, 603-614

Abstract: Abstract The incredible growth of telecom data and fierce competition among telecommunication operators for customer retention demand continues improvements, both strategically and analytically, in the current customer relationship management (CRM) systems. One of the key objectives of a typical CRM system is to classify and predict a group of potential churners form a large set of customers to devise profitable and targeted retention campaigns for keeping a long-term relationship with valued customers. For achieving the aforementioned objective, several churn prediction models have been proposed in the past for the accurate identification of the customers who are prone to churn. However, these previously proposed models suffer from a number of limitations which place strong barriers towards the direct applicability of such models for accurate prediction. Firstly, the feature selection methods adopted in majority of the past work neglected the information rich variables present in call details record for model development. Secondly, selection of important features was done through statistical methods only. Although statistical methods have been applied successfully in diverse domains, however, these methods alone without the augmentation of domain knowledge have the tendency to yield erroneous results. Thirdly, the previous models have been validated mainly with benchmark datasets which do not provide a true representation of real world telecom data consisting of noise and large number of missing values. Fourthly, the evaluation measures used in the past neglected the True Positive (TP) rate, which actually highlights the ability of a model to correctly classify the percentage of churners as compared to non-churners. Finally, the classifiers used in the previous models completely neglected the use of fuzzy classification methods which perform reasonably well for data sets with noise. In this paper, a fuzzy based churn prediction model has been proposed and validated using a real data from a telecom company in South Asia. A number of predominant classifiers namely, Neural Network, Linear regression, C4.5, SVM, AdaBoost, Gradient Boosting and Random Forest have been compared with fuzzy classifiers to highlight the superiority of fuzzy classifiers in predicting the accurate set of churners.

Keywords: Churn prediction; Fuzzy classification; Feature selection; Telecommunication; K-nearest neighbor (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11235-017-0310-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:66:y:2017:i:4:d:10.1007_s11235-017-0310-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235

DOI: 10.1007/s11235-017-0310-7

Access Statistics for this article

Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan

More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:telsys:v:66:y:2017:i:4:d:10.1007_s11235-017-0310-7