EconPapers    
Economics at your fingertips  
 

Power allocation and relay selection for network-coded D2D communication underlay heterogeneous cellular networks

Hashem Kalbkhani () and Mahrokh G. Shayesteh ()
Additional contact information
Hashem Kalbkhani: Urmia University
Mahrokh G. Shayesteh: Urmia University

Telecommunication Systems: Modelling, Analysis, Design and Management, 2018, vol. 67, issue 4, No 11, 699-715

Abstract: Abstract Underlay device-to-device (D2D) communication is an attractive technology enabling nearby cellular users to communicate with each other directly in order to increase data rate and spectral efficiency. The current cellular heterogeneous networks consist of macrocell base stations and small cell base stations with different transmit powers and coverage areas. Femtocell is the most popular small cell which is expected to be utilized in dense and ultra-dense scenarios in the future. Network coding in relay-assisted multi-hop communications improves achievable transmission rate and coverage of D2D communications. In this paper, two-hop random linear network coding network in cooperative D2D communication (RLNC-CDC) is considered. We propose to use femtocell base station (FBS) as a relay. We assume that the D2D pair and relay operate in the frequency band which is allocated to femtocell network. Therefore, there would be interference from the relay node and the D2D communication on the femtocell network users. To reduce the interference, the sum of transmit powers of the D2D pair and selected relay FBS should be minimized in a way that the highest transmission rate for the D2D pair is achieved. The constraints on the bounds of transmit powers of the D2D and relay node as well as the minimum required transmission rate for D2D communication are considered and the optimum solution is obtained. Simulation results indicate that the proposed RLNC-CDC achieves higher data rate and smaller outage probability than the direct D2D transmission.

Keywords: D2D communication; Femtocell; Network coding; Power allocation; Relay selection; Transmission rate; Sum transmit power (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11235-017-0367-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:67:y:2018:i:4:d:10.1007_s11235-017-0367-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235

DOI: 10.1007/s11235-017-0367-3

Access Statistics for this article

Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan

More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:telsys:v:67:y:2018:i:4:d:10.1007_s11235-017-0367-3