Securing Fog-enabled IoT: federated learning and generative adversarial networks for intrusion detection
Ting Lei ()
Additional contact information
Ting Lei: Chengdu Technological University
Telecommunication Systems: Modelling, Analysis, Design and Management, 2025, vol. 88, issue 1, No 11, 12 pages
Abstract:
Abstract Intrusion detection in Fog-enabled Internet of Things (IoT) environments presents unique challenges due to the distributed and heterogeneous nature of data sources. Traditional centralized approaches may not be suitable for Fog computing, where data privacy and latency constraints are critical. This paper proposes a novel framework that integrates federated learning (FL) and generative adversarial networks (GANs) for intrusion detection in Fog-enabled IoT networks. In our approach, each Fog node trains a local GAN model using FL, where the GAN’s discriminator learns to distinguish between normal and anomalous data patterns specific to its local environment. The federated aggregation of these local models at a central server enhances the global understanding of intrusion behaviors across the Fog network without compromising data privacy. We present detailed algorithms for local GAN training, federated model aggregation, and real-time intrusion detection using the GAN discriminator. Experimental results demonstrate the effectiveness of our approach in detecting various types of intrusions while maintaining low latency and preserving data confidentiality in Fog environments.
Keywords: Federated learning; Generative adversarial networks; Intrusion detection; Fog computing; Internet of Things (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11235-024-01237-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:88:y:2025:i:1:d:10.1007_s11235-024-01237-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-024-01237-z
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().