Multi-attribute decision making approach for energy efficient sensor placement and clustering in wireless sensor networks
Chandra Naik () and
D. Pushparaj Shetty ()
Additional contact information
Chandra Naik: Alva’s Institute of Engineering and Technology
D. Pushparaj Shetty: National Institute of Technology
Telecommunication Systems: Modelling, Analysis, Design and Management, 2025, vol. 88, issue 1, No 3, 17 pages
Abstract:
Abstract Energy conservation is the most critical problem in wireless sensor networks due to its battery-operated tiny devices called sensors. These sensors are placed randomly in a region of interest to monitor certain events and targets. The random placement of sensors creates interference among them and leads to a quick energy drain of sensors. Minimizing interference while maintaining target coverage and connectivity in wireless sensor networks is less studied in the literature. There are many studies on clustering in wireless sensor network using different schemes and techniques to handle energy problems in wireless sensor networks. However, these studies never consider the interference during the sensor placement and clustering. The interference of nodes causes a message drop and results in quick energy drain during data transfer between member nodes and cluster heads. Therefore, in the proposed work, a novel interference-aware sensor deployment scheme is developed followed by a clustering technique on deployed sensors. The parameters such as interference, coverage, and connectivity of the sensors are considered for the sensor deployment. In clustering, the cluster heads are identified using various parameters like energy of the nodes, distance between the nodes and base station, communication range of the nodes, average distance between the nodes to their member nodes. Both the sensor deployment and the clustering adopt a well known multi-attribute decision making method E_TOPSIS for ranking potential positions for deployment of the sensors and ranking the sensor nodes for electing cluster heads. The sensor deployment scheme is compared with TOPSIS and SAW methods and the clustering technique is compared with TOPSIS, SAW, and Modified LEACH for stability period and network lifetime. The results show that the stability period for clustering using E_TOPSIS is 34.1%, 73.65%, and 83.5% better than TOPSIS, SAW, and Modified LEACH methods respectively.
Keywords: Wireless sensor networks; TOPSIS; MADM; Sensors deployment; Clustering; Entropy; MCDM (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11235-024-01250-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:88:y:2025:i:1:d:10.1007_s11235-024-01250-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-024-01250-2
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().