Carpal Tunnel Syndrome automatic classification: electromyography vs. ultrasound imaging
Maurizio Maravalle (),
Federica Ricca (),
Bruno Simeone and
Vincenzo Spinelli ()
TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 2015, vol. 23, issue 1, 100-123
Abstract:
We study automatic classification for the diagnosis of the Carpal Tunnel Syndrome (CTS), a disease frequently observed in occupational medicine. We apply different classification techniques to two real-life medical data sets related to a group of patients reporting the typical symptoms of this syndrome. We are particularly interested in the performance of “Box-Clustering” (BC), a method that is able to favor readability and interpretation of the results by medical doctors, thanks to its “box-type” output which naturally configures as a medical report. Preliminary results of a basic implementation of BC applied to different data sets already exist in the literature, and here we add more. In particular, in this paper, we apply a recently developed (and specialized) implementation of BC, and we test it for the first time on real-life medical data related to the CTS. Our purpose is to evaluate the performance of BC for automatic diagnosis, as well as, gain in explanation capability and interpretability. This is, in fact, a crucial aspect in medical applications that generally represents a limit for other well-known and powerful classification techniques. Copyright Sociedad de Estadística e Investigación Operativa 2015
Keywords: Automatic classification; Box-Clustering; Carpal Tunnel Syndrome; Decision support in medical diagnosis; 90B50 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11750-014-0325-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:topjnl:v:23:y:2015:i:1:p:100-123
Ordering information: This journal article can be ordered from
http://link.springer.de/orders.htm
DOI: 10.1007/s11750-014-0325-0
Access Statistics for this article
TOP: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Juan José Salazar González and Gustavo Bergantiños
More articles in TOP: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().