EconPapers    
Economics at your fingertips  
 

Optimizing Safe Yield Policy Implementation

Richard Peralta (), Bassel Timani and Rudolf Das

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2011, vol. 25, issue 2, 483-508

Abstract: The presented method enhances groundwater-mandated safe yield management. It is useful for settings that prevent sustained yield or integrated management. To protect hydraulically connected surface water rights, the Utah government’s Cache Valley groundwater management plan proposes that total pumping increase not exceed 84,431 m 3 /day. To determine how best to spatially distribute additional allowable pumping, stakeholders quantified limits defining acceptable impacts on selected water resource indicators. A new simulation–optimization (S–O) algorithm used these limits while computing optimal spatially distributed perennial yield or safe yield groundwater pumping extraction strategies. The limits prevent unacceptable decreases in: head and net flow between aquifer and surface waters (rivers, surface/subsurface drains, springs, lakes). The optimization objective function maximizes weighted pumping to provide water for 18 growing municipalities. For 16 perennial yield scenarios, computed optimal pumping increases differ in protectiveness toward senior water rights, and range from 16% to 103% of the state plan-proposed increase. Implementing a protective strategy would achieve 90% of the storage changes needed to reach equilibrium within 23 years. Indicator potentiometric heads would reach equilibrium within 10–40 years. At equilibrium, an optimal Cache Valley perennial yield strategy acceptably minimizes net annual non-pumping discharges. By comparison, multi-period 20-year transient groundwater mining optimizations allow more pumping in early years. Pumping then must decline to satisfy seepage and head constraints through year 20. Adverse seepage impact would increase for years thereafter. For situations governed by safe or perennial yield policy, equilibrium-based (steady-state) optimization is very useful. It effectively develops optimal perennial yield strategies. Copyright Springer Science+Business Media B.V. 2011

Keywords: Optimization; Perennial yield; Safe yield; Simulation–optimization; S–O; Surface water/ground water interaction; Model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-010-9710-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:25:y:2011:i:2:p:483-508

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-010-9710-0

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:25:y:2011:i:2:p:483-508