Algorithm for Increasing the Speed of Evolutionary Optimization and its Accuracy in Multi-objective Problems
Ashkan Shokri (),
Omid Bozorg Haddad () and
Miguel Mariño ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 7, 2249 pages
Abstract:
Optimization algorithms are important tools for the solution of combinatorial management problems. Nowadays, many of those problems are addressed by using evolutionary algorithms (EAs) that move toward a near-optimal solution by repetitive simulations. Sometimes, such extensive simulations are not possible or are costly and time-consuming. Thus, in this study a method based on artificial neural networks (ANN) is proposed to reduce the number of simulations required in EAs. Specifically, an ANN simulator is used to reduce the number of simulations by the main simulator. The ANN is trained and updated only for required areas in the decision space. Performance of the proposed method is examined by integrating it with the non-dominated sorting genetic algorithm (NSGAII) in multi-objective problems. In terms of density and optimality of the Pareto front, the hybrid NSGAII-ANN is able to extract the Pareto front with much less simulation time compared to the sole use of the NSGAII algorithm. The proposed NSGAII-ANN methodology was examined using three standard test problems (FON, KUR, and ZDT1) and one real-world problem. The latter addresses the operation of a reservoir with two objectives (meeting demand and flood control). Thus, based on this study, use of the NSGAII-ANN integrative algorithm in problems with time-consuming simulators reduces the required time for optimization up to 50 times. Results of the real-world problem, despite lower computational-time requirements, show a performance similar to that achieved in the aforementioned test problems. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: NSGAII-ANN algorithm; Evolutionary optimization; Time-consuming simulation; Expensive simulation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0285-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:7:p:2231-2249
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-013-0285-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().