Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models
Muhammad Al-Zahrani () and
Amin Abo-Monasar ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 10, 3662 pages
Abstract:
Water demand prediction is essential in any short or long-term management plans. For short-term prediction of water demand, climatic factors play an important role since they have direct influence on water consumption. In this paper, prediction of future daily water demand for Al-Khobar city in the Kingdom of Saudi Arabia is investigated. For this purpose, the combined technique of Artificial Neural Networks (ANNs) and time series models was constructed based on the available daily water consumption and climatic data. The paper covers the following: forecast daily water demand for Al-Khobar city, compare the performance of the ANNs [General Regression Neural Network (GRNN) model] technique to time series models in predicting water consumption, and study the ability of the combined technique (GRNN and time series) to forecast water consumption compared to the time series technique alone. Results indicate that combining time series models with ANNs model will give better prediction compared to the use of ANNs or time series models alone. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Water demand; Artificial neural networks; Time series; Climatic variables; Saudi Arabia (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-015-1021-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:10:p:3651-3662
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-015-1021-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().