Irrigation Demand Forecasting Using Artificial Neuro-Genetic Networks
R. Perea (),
E. Poyato (),
P. Montesinos () and
J. Díaz ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 15, 5567 pages
Abstract:
In recent years, a significant evolution of forecasting methods has been possible due to advances in artificial computational intelligence. The achievement of the optimal architecture of an ANN is a complex process. Thus, in this work, an Evolutionary Robotic (study of the evolution of an ANN using Genetic Algorithm) approach has been used to obtain an Artificial Neuro-Genetic Networks (ANGN) to the short-term forecasting of daily irrigation water demand that maximizes the accuracy of the predictions. The methodology is applied in the Bembézar Irrigation District (Southern Spain). An optimal ANGN architecture (ANGN (7, 29, 16, 1)) has achieved obtaining a Standard Error Prediction (SEP) value of the daily water demand of 12.63 % and explaining 93 % of the total variance observed during validation process. The developed model proved to be a powerful tool that, without long dataset and time requirements, can be very useful for the development of management strategies. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Optimal forecasting models; Artificial intelligence; Seasonal model update; Evolutionary robotics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-015-1134-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:15:p:5551-5567
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-015-1134-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().