Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy)
Nicolò Colombani,
Micòl Mastrocicco () and
Beatrice Giambastiani
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 2, 603-618
Abstract:
The coastal aquifer salinization is an urgent problem caused by groundwater resources overexploitation and climate change. This phenomenon is enhanced in areas lying below the sea level, like the polders in the Netherlands or the Po River lowland in Italy. In these reclaimed lands the saltwater intrusion is usually controlled by a network of irrigation canals that supplies freshwater to the shallow aquifer, maintaining soil salinity at acceptable levels. The 2012 was dramatic in terms of agricultural water supply, since the Po River plain experienced a prolonged drought. Despite this, continuous monitoring of piezometric heads and total dissolved solids (TDS) near a canal (Canale della Gronda) demonstrated that freshening was occurring in the shallow portion (first 4 m) of the unconfined aquifer, while the bottom part was characterized by elevated relic salinity. The two-dimensional model SEAWAT was calibrated using piezometric heads and TDS depth profiles measured along a transect perpendicular to the canal. The calibrated model was then used to predict the behaviour of this cross section using a multiple scenario approach: increase in evapotranspiration induced by temperature increase; increase in the frequency of extreme high rainfall events; extreme drought conditions; and canal dewatering due to salinization of the water courses. Moreover, for each scenario, two sub-scenarios were run to account for projected sea level rise. The first three scenarios had only a minor influence on the aquifer salinization rate, while the fourth one predicted serious upward flux of the high salinity groundwater actually residing in the bottom of the unconfined aquifer. The scenarios quantified the possible future effects on groundwater salinization and could be useful to find adaptation strategies to manage the water resources of this and similar areas. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Climate change; Groundwater salinization; Modelling recharge; SEAWAT (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0795-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:2:p:603-618
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-014-0795-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().