Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions
M. Majidi (),
A. Alizadeh,
M. Vazifedoust,
A. Farid and
T. Ahmadi
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 7, 2107-2124
Abstract:
Numerous equations exist for estimating reference evapotranspiration (ETo). Relationships were often subject to rigorous local calibration, hence having limited global validity. The Penman–Monteith (P − M) equation is widely perceived as the best equation for estimating daily and monthly ETo in all climates. The main shortcoming of the P − M equation is that it requires numerous weather data that may not always be available. This study evaluates the methods to estimate missing data in the context of their influence on the performance of the ETo equations. The performance of other ETo equations under missing data are also compared. ETo equations are ranked individually in semi − humid and semi − arid climates based on their accuracy. Results indicate that the P − M equation is more sensitive in semi − arid climate than semi − humid climate under missing data conditions. The accuracy of the P − M equation under these conditions increases remarkably if any available relationships between dew point and minimum temperatures and also long–term average wind speed for each station are exploited. Finally, the minimum data requirements necessary for adequate performance of the P − M equation are air temperature for semi − humid climates, air temperature and wind speed for semi − arid climates, and the availability of a relationship between dew point and minimum temperature, especially for semi − arid climate. In absence of the satisfaction of such minimum requirements, the Hargreaves–Samani equation is preferable for semi − humid climates and the Hargreaves equation modified by Droogers and Allen ( 2002 ) for semi − arid climates. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Missing weather data; ETo equations; Dew point temperature; Wind speed (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0782-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:7:p:2107-2124
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-014-0782-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().