EconPapers    
Economics at your fingertips  
 

A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an “at-site” Regional Frequency Analysis: Application at Mediterranean Climate Locations

J. Ayuso-Muñoz, A. García-Marín (), P. Ayuso-Ruiz, J. Estévez, R. Pizarro-Tapia and E. Taguas

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 9, 3243-3263

Abstract: Intensity-duration-frequency (IDF) relationships are the tools for obtaining design rainfall estimation. Their calculation requires rainfall data not commonly available in time. The scarce spatial information makes it difficult to perform a Regional Frequency Analysis (RFA). The objective of this paper was to establish a new method to obtain more efficient IDF relationships than those traditionally applied, by using at-site regional frequency analysis. An application to rainfall datasets from two Mediterranean climate locations (Spain and Chile) has been set up. Nine annual maximum rainfall data series (AMS) of duration from 10 min to 24 h were analyzed. The tests of Mann–Whitney for homogeneity, Wald-Wolfowitz for independence and Mann-Kendall for stationarity, were conducted to test the underlying assumptions in frequency analyses. The RFA tests identified the nine considered datasets from each location as a homogeneous region, and the suitable regional frequency distribution to establish the regional growth curves. Considering the regional index flood model, the regional growth curves were used to obtain the rainfall quantiles for the return periods and durations considered at each location Their combination with the equations obtained after correlating the mean values from the AMS and their durations permitted the obtainment of the new power-type IDF relationships.. The efficiency of the new model was evaluated by using several efficiency indexes, being more efficient and giving a better performance compared to traditional IDF models. The proposed method offers great application possibilities in Mediterranean climate areas located in the Mediterranean Catchment, California, Mexico, Central Chile, Australia and South Africa. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: IDF relationships; L-Moments; Regional frequency analysis; Precipitation; Mediterranean climate (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-015-0993-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:9:p:3243-3263

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-015-0993-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:29:y:2015:i:9:p:3243-3263