Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece
Georgia Papacharalampous (),
Hristos Tyralis () and
Demetris Koutsoyiannis ()
Additional contact information
Georgia Papacharalampous: National Technical University of Athens
Hristos Tyralis: National Technical University of Athens
Demetris Koutsoyiannis: National Technical University of Athens
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 15, No 23, 5207-5239
Abstract:
Abstract We provide contingent empirical evidence on the solutions to three problems associated with univariate time series forecasting using machine learning (ML) algorithms by conducting an extensive multiple-case study. These problems are: (a) lagged variable selection, (b) hyperparameter handling, and (c) comparison between ML and classical algorithms. The multiple-case study is composed by 50 single-case studies, which use time series of mean monthly temperature and total monthly precipitation observed in Greece. We focus on two ML algorithms, i.e. neural networks and support vector machines, while we also include four classical algorithms and a naïve benchmark in the comparisons. We apply a fixed methodology to each individual case and, subsequently, we perform a cross-case synthesis to facilitate the detection of systematic patterns. We fit the models to the deseasonalized time series. We compare the one- and multi-step ahead forecasting performance of the algorithms. Regarding the one-step ahead forecasting performance, the assessment is based on the absolute error of the forecast of the last monthly observation. For the quantification of the multi-step ahead forecasting performance we compute five metrics on the test set (last year’s monthly observations), i.e. the root mean square error, the Nash-Sutcliffe efficiency, the ratio of standard deviations, the coefficient of correlation and the index of agreement. The evidence derived by the experiments can be summarized as follows: (a) the results mostly favour using less recent lagged variables, (b) hyperparameter optimization does not necessarily lead to better forecasts, (c) the ML and classical algorithms seem to be equally competitive.
Keywords: Neural networks; Support vector machines; Hyperparameter optimization; Lagged variable selection; Multi-step ahead forecasting; One-step ahead forecasting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2155-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2155-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2155-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().