New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm
Sarita Gajbhiye Meshram (),
M. A. Ghorbani,
Ravinesh C. Deo,
Mahsa Hasanpour Kashani,
Chandrashekhar Meshram and
Vahid Karimi
Additional contact information
Sarita Gajbhiye Meshram: Rani Durgawati University
M. A. Ghorbani: University of Tabriz
Ravinesh C. Deo: University of Southern Queensland
Mahsa Hasanpour Kashani: University of Mohaghegh Ardabili
Chandrashekhar Meshram: Rani Durgawati University
Vahid Karimi: University of Tabriz
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 7, No 7, 2335-2356
Abstract:
Abstract Predicting sediment yield is an important task for decision-makers in environmental monitoring and water management since the benefits of applying non-linear, artificial intelligence (AI) models for optimal prediction can be far reaching in real-life decision support systems. AI-based models are considered to be favorable predictive tools since the nonlinear nature of suspended sediment data series warrants the utilization of nonlinear predictive methods for feature extraction, and for accurate simulation of suspended sediment load. In this study, Artificial Neural Network (ANN) approaches are employed to estimate the monthly sediment load where the two-phase Feed-forward Neuron Network Particle Swarm Optimization Gravitational Search Algorithm (FNN-PSOGSA) is developed, and then evaluated in respect to 3 distinct algorithms: the Adaptive Neuro-Fuzzy Inference System (ANFIS), Feed-forward Neuron Network (FNN) and the single-phase Feed-forward Neuron Network Particle Swarm Optimization (FNN-PSO). The study is carried out using the monthly rainfall, runoff and sediment data spanning a 10 year period (2000–2009) where about 75% of data are used in model training phase, 25% in testing phase. Three statistical performance criteria namely: the mean absolute error (MAE), Nash-Sutcliffe coefficient (NSE) and the Willmott’s Index (WI) and diagnostic plots visualizing the tested results are used to evaluate the performance of four AI-based models. The results reveal that the objective model (the two-phase FNN-PSOGSA model) and the single-phase FNN-PSO model yielded more precise results compared to the other forecast models. This result accorded to an NSE value of 0.612 (for the FNN-PSOGSA model) vs. an NS value of 0.500, 0.331 and 0.244 for the FNN-PSO, FNN and ANFIS models, and WI = 0.832 vs. 0.771, 0.692 and 0.726, respectively The study also demonstrated that the FNN model generated slightly better results than the ANFIS model for the estimation of sediment load data but overall, the two-phase FNN-PSOGSA model outperformed all comparison models. In light of the superior performance, this research advocates that the fully-optimized two-phase FNN-PSOGSA model can be explored as a decision-support tool for monthly sediment load forecasting using the rainfall and runoff values as the predictor datasets.
Keywords: Neural networks; PSO algorithm; GSA algorithm; Sediment load; Modelling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02265-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02265-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02265-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().