EconPapers    
Economics at your fingertips  
 

Comparison between Different Distributed Methods for Flood Susceptibility Mapping

Lorena Liuzzo (), Vincenzo Sammartano and Gabriele Freni
Additional contact information
Lorena Liuzzo: Cittadella Universitaria
Vincenzo Sammartano: Università degli Studi di Palermo
Gabriele Freni: Università degli Studi di Enna Kore

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 9, No 12, 3155-3173

Abstract: Abstract Flooding is one of the main natural hazards in Northern Europe and several areas of the Northern Boreal Hemisphere, where during intense rainfall events, several river basins are affected by a fast water level rise that may cause severe damage to human lives and properties. For these reasons, the development of flood models to identify susceptible areas is essential for decision-makers. Geographic Information Systems (GIS) are currently accurate and valuable support tools for defining flood susceptibility maps at different spatial scales. In this study, the prediction accuracy of different GIS-based procedures in the identification of flooding susceptibility is tested and compared. These procedures include the frequency ratio, a combination of the frequency ratio and logistic regression, a combination of the frequency ratio and Shannon’s entropy index, and the statistical index. Ten conditioning parameters of flooding susceptibility are considered: elevation, slope, curvature, land use, Topographic Wetness Index, Stream Power Index, hydrogeology, stream distance, flow direction and average annual rainfall. The comparison analysis is carried out by applying these methods to the study area of Devon County in Southwest England. A total of 225 flood events are used to define the models. For model validation, 1000 randomly selected training and testing sub-datasets have been used in the definition of the receiver operating characteristic (ROC) curves. The results show that the procedure based on the statistical index provides the highest accuracy and reliability in flood susceptibility predictions.

Keywords: Flood susceptibility; Flooding maps; Frequency ratio; Logistic regression; Shannon’s entropy; GIS-based procedure (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02293-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:9:d:10.1007_s11269-019-02293-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-019-02293-w

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:33:y:2019:i:9:d:10.1007_s11269-019-02293-w