Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)
Abdulaziz Alqahtani (),
Tom Sale (),
Michael J. Ronayne and
Courtney Hemenway
Additional contact information
Abdulaziz Alqahtani: Prince Sattam Bin Abdulaziz University
Tom Sale: Colorado State University
Michael J. Ronayne: Colorado State University
Courtney Hemenway: Hemenway Groundwater Engineering, Inc
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 2, No 2, 429-445
Abstract:
Abstract Sustained pumping of groundwater can lead to declining water levels in wellfields and concerns regarding the sustainability of groundwater resources. Aquifer Storage and Recovery (ASR) is a promising approach for maintaining water levels in wells and increasing the sustainability of groundwater resources. Herein, an analytical model relying on superposition of the Theis equation is used to resolve water levels at 40 wells in three vertically stacked ASR wellfields operating in the Denver Basin Aquifers, Colorado (USA). Fifteen years of dynamic recovery/recharge data are used to estimate aquifer and well properties, which are then used to predict water levels at individual wells. Close agreement between modeled and observed water levels supports the validity of the analytical model for ASR wellfield applications. During the study period, 45 million m3 of groundwater is produced and 11 million m3 is recharged, leading to a net withdrawal of 34 million m3 of groundwater. To quantify the benefits of recharge, the analytical model is applied to predict water levels at wells absent the historical recharge. Results indicate that during recovery and no-flow periods, recharge has increased water levels at wells up to 60 m compared to the no-recharge scenario. On average, the recharge increased water levels during the study period by 3, 4, and 11 m for wells in the Denver, Arapahoe, and Laramie Fox-Hills Aquifers, respectively. This study demonstrates the utility of analytical modeling to quantify the effects of long-term ASR at wells.
Keywords: Aquifer storage and recovery; Groundwater recharge; Wellfield modeling; Sustainable development of groundwater (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02721-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:2:d:10.1007_s11269-020-02721-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02721-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().