Development of a Predictive Equation for Modelling the Infiltration Process Using Gene Expression Programming
Tabasum Rasool (),
A. Q. Dar and
M. A. Wani
Additional contact information
Tabasum Rasool: National Institute of Technology Srinagar, Hazratbal
A. Q. Dar: National Institute of Technology Srinagar, Hazratbal
M. A. Wani: HMAARI
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 6, No 11, 1888 pages
Abstract:
Abstract In this study, the soft computing technique of Gene expression programming (GEP) has been employed to generate a predictive equation of infiltration rate (fp). Infiltration experiments were conducted at 124 different sites and soil samples were collected to assess various soil properties throughout the Himalayan lake catchment. Parameters determined from observed data using nonlinear-Levenberg Marquardt algorithm were substituted in Horton, Kostiakov and Philip infiltration models and fp were predicted. Using soil data generated by laboratory investigation of soil samples, the GEP model was developed. Training and testing of the GEP model was performed using 70% and 30% of data respectively. Performance of GEP developed functional relationship was evaluated by comparing predictions from it and aforementioned infiltration models with field observed fp, and by applying overall performance index (OPI) computed using Coefficient of Determination (R2), Nash–Sutcliffe Efficiency (ENS), Willmott’s Index of Agreement (W), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Expression developed using GEP indicated feasibility of developed equation with ENS, R2, W, RMSE and MAE of 0.84, 0.84, 0.96, 1.9, and 0.8, respectively for training data-set and 0.84, 0.85, 0.95, 1.2, and 0.95, respectively for testing data-set. Comparative analysis revealed that though with a slightly higher OPI value (0.7–0.8), the performance of conventional models is better compared to the GEP model (0.66) but the GEP model having satisfactory performance may be used for fp prediction particularly in absence of observed data.
Keywords: Infiltration rate; Gene expression Programming; Levenberg Marquardt algorithm; Soil physical properties; Kostiakov infiltration model; Philip infiltration model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02816-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:6:d:10.1007_s11269-021-02816-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02816-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().