An L-Moment Based Characterization of the Family of Dagum Distributions
Mohan D. Pant and
Todd C. Headrick
Journal of Statistical and Econometric Methods, 2013, vol. 2, issue 3, 3
Abstract:
This paper introduces a method for simulating univariate and multivariate Dagum distributions through the method of 𝐿-moments and 𝐿-correlations. A method is developed for characterizing non-normal Dagum distributions with controlled degrees of 𝐿-skew, 𝐿-kurtosis, and 𝐿-correlations. The procedure can be applied in a variety of contexts such as statistical modeling (e.g., income distribution, personal wealth distributions, etc.) and Monte Carlo or simulation studies. Numerical examples are provided to demonstrate that 𝐿-moment-based Dagum distributions are superior to their conventional moment-based analogs in terms of estimation and distribution fitting. Evaluation of the proposed method also demonstrates that the estimates of 𝐿-skew, 𝐿-kurtosis, and 𝐿-correlation are substantially superior to their conventional product-moment based counterparts of skew, kurtosis, and Pearson correlation in terms of relative bias and relative efficiency–most notably in the context of heavy-tailed distributions.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.scienpress.com/Upload/JSEM%2fVol%202_3_3.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spt:stecon:v:2:y:2013:i:3:f:2_3_3
Access Statistics for this article
More articles in Journal of Statistical and Econometric Methods from SCIENPRESS Ltd
Bibliographic data for series maintained by Eleftherios Spyromitros-Xioufis ().