Determination of the Probability Distribution Measures from Market Option Prices Using the Method of Maximum Entropy in the Mean
Henryk Gzyl () and
Silvia Mayoral
Applied Mathematical Finance, 2012, vol. 19, issue 4, 299-312
Abstract:
We consider the problem of recovering the risk-neutral probability distribution of the price of an asset, when the information available consists of the market price of derivatives of European type having the asset as underlying. The information available may or may not include the spot value of the asset as data. When we only know the true empirical law of the underlying, our method will provide a measure that is absolutely continuous with respect to the empirical law, thus making our procedure model independent. If we assume that the prices of the derivatives include risk premia and/or transaction prices, using this method it is possible to estimate those values, as well as the no-arbitrage prices. This is of interest not only when the market is not complete, but also if for some reason we do not have information about the model for the price of the underlying.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2011.621354 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:19:y:2012:i:4:p:299-312
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2011.621354
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().