EconPapers    
Economics at your fingertips  
 

Structural Clustering of Volatility Regimes for Dynamic Trading Strategies

Arjun Prakash, Nick James, Max Menzies and Gilad Francis

Applied Mathematical Finance, 2021, vol. 28, issue 3, 236-274

Abstract: We develop a new method to find the number of volatility regimes in a nonstationary financial time series by applying unsupervised learning to its volatility structure. We use change point detection to partition a time series into locally stationary segments and then compute a distance matrix between segment distributions. The segments are clustered into a learned number of discrete volatility regimes via an optimization routine. Using this framework, we determine the volatility clustering structure for financial indices, large-cap equities, exchange-traded funds and currency pairs. Our method overcomes the rigid assumptions necessary to implement many parametric regime-switching models while effectively distilling a time series into several characteristic behaviours. Our results provide a significant simplification of these time series and a strong descriptive analysis of prior behaviours of volatility. Finally, we create and validate a dynamic trading strategy that learns the optimal match between the current distribution of a time series and its past regimes, thereby making online risk-avoidance decisions at present.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2021.2007146 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:28:y:2021:i:3:p:236-274

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/1350486X.2021.2007146

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:28:y:2021:i:3:p:236-274