Fast numerical valuation of American, exotic and complex options
M. A. H. Dempster and
J. P. Hutton
Applied Mathematical Finance, 1997, vol. 4, issue 1, 1-20
Abstract:
The purpose of this paper is to present evidence in support of the hypothesis that fast, accurate and parametrically robust numerical valuation of a wide range of derivative securities can be achieved by use of direct numerical methods in the solution of the associated PDE problems. Specifically, linear programming methods for American vanilla and exotic options, and explicit methods for a three stochastic state variable problem (a multi-period terminable differential swap) are explored and promising numerical results are discussed. The resulting value surface gives, simultaneously, valuation for many maturities and underlying prices, and the parameters required for risk analysis.
Keywords: Options; Swaps; Parabolic Pdes; Direct Numerical Methods; Linear Programming (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/135048697334809 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:4:y:1997:i:1:p:1-20
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/135048697334809
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().