EconPapers    
Economics at your fingertips  
 

Liquidity and credit risk

Umberto Cherubini and Giovanni Della Lunga

Applied Mathematical Finance, 2001, vol. 8, issue 2, 79-95

Abstract: The paper uses fuzzy measure theory to represent liquidity risk, i.e. the case in which the probability measure used to price contingent claims is not known precisely. This theory enables one to account for different values of long and short positions. Liquidity risk is introduced by representing the upper and lower bound of the price of the contingent claim computed as the upper and lower Choquet integral with respect to a subadditive function. The use of a specific class of fuzzy measures, known as g λ measures enables one to easily extend the available asset pricing models to the case of illiquid markets. As the technique is particularly useful in corporate claims evaluation, a fuzzified version of Merton's model of credit risk is presented. Sensitivity analysis shows that both the level and the range (the difference between upper and lower bounds) of credit spreads are positively related to the 'quasi debt to firm value ratio' and to the volatility of the firm value. This finding may be read as correlation between credit risk and liquidity risk, a result which is particularly useful in concrete risk-management applications. The model is calibrated on investment grade credit spreads, and it is shown that this approach is able to reconcile the observed credit spreads with risk premia consistent with observed default rate. Default probability ranges, rather than point estimates, seem to play a major role in the determination of credit spreads.

Keywords: Credit Risk; Incomplete Markets; Liquidity Risk; Knightian Uncertainty; Option Pricing; Fuzzy Measures (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860110061013 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:8:y:2001:i:2:p:79-95

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/13504860110061013

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:8:y:2001:i:2:p:79-95