Dynamic conditional score models of degrees of freedom: filtering with score-driven heavy tails
Szabolcs Blazsek and
Luis Antonio Monteros
Applied Economics, 2017, vol. 49, issue 53, 5426-5440
Abstract:
This article extends the quasi-autoregressive (QAR) plus Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) dynamic conditional score (DCS) model. For the new DCS model, the degrees of freedom parameter is time varying and tail thickness of the error term is updated by the conditional score. We compare the performance of QAR plus Beta-t-EGARCH with constant degrees of freedom (benchmark model) and QAR plus Beta-t-EGARCH with time-varying degrees of freedom (extended model). We use data from the Standard and Poor’s 500 (S&P 500) index, and a random sample of its 150 components that are from different industries of the United States (US) economy. For the S&P 500, all likelihood-based model selection criteria support the extended model, which identifies extreme events with significant impact on the US stock market. We find that for 59% of the 150 firms, the extended model has a superior statistical performance. The results suggest that the extended model is superior for those industries, which produce products that people usually are unwilling to cut out of their budgets, regardless of their financial situation. We perform an application to compare the density forecast performance of both DCS models. We perform an application to Monte Carlo value-at-risk for both DCS models.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2017.1307935 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:49:y:2017:i:53:p:5426-5440
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20
DOI: 10.1080/00036846.2017.1307935
Access Statistics for this article
Applied Economics is currently edited by Anita Phillips
More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().