EconPapers    
Economics at your fingertips  
 

A Partially Linear Kernel Estimator for Categorical Data

Qi Gao, Long Liu and Jeffrey Racine

Econometric Reviews, 2015, vol. 34, issue 6-10, 959-978

Abstract: We extend Robinson's (1988) partially linear estimator to admit the mix of datatypes typically encountered by applied researchers, namely, categorical (nominal and ordinal) and continuous. We also relax the independence assumption that is prevalent in this literature and allow for β-mixing time-series data. We employ Li, Ouyang, and Racine's (2009) categorical and continuous data kernel method, and extend this so that a mix of continuous and/or categorical variables can appear in the nonparametric part of a partially linear time-series model. The estimator appearing in the linear part is shown to be -consistent, which is of course the case for Robinson's (1988) estimator. Asymptotic normality of the nonparametric component is also established. A modest Monte Carlo simulation demonstrates that the proposed estimator can outperform existing nonparametric, semiparametric, and popular parametric specifications that appear in the literature. An application using Survey of Income and Program Participation (SIPP) data to model a dynamic labor supply function is undertaken that provides a robustness check and demonstrates that the proposed method is capable of outperforming popular parametric specifications that have been used to model this dataset.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2014.956613 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:959-978

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2014.956613

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-04-07
Handle: RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:959-978