Modeling severity risk under PD–LGD correlation
Chulwoo Han
The European Journal of Finance, 2017, vol. 23, issue 15, 1572-1588
Abstract:
In this article, a generic severity risk framework in which loss given default (LGD) is dependent upon probability of default (PD) in an intuitive manner is developed. By modeling the conditional mean of LGD as a function of PD, which also varies with systemic risk factors, this model allows an arbitrary functional relationship between PD and LGD. Based on this framework, several specifications of stochastic LGD are proposed with detailed calibration methods. By combining these models with an extension of CreditRisk+, a versatile mixed Poisson credit risk model that is capable of handling both risk factor correlation and PD–LGD dependency is developed. An efficient simulation algorithm based on importance sampling is also introduced for risk calculation. Empirical studies suggest that ignoring or incorrectly specifying severity risk can significantly underestimate credit risk and a properly defined severity risk model is critical for credit risk measurement as well as downturn LGD estimation.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1351847X.2016.1212385 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:23:y:2017:i:15:p:1572-1588
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847X.2016.1212385
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().