Recurrent neural networks for conflict forecasting
Iris Malone
International Interactions, 2022, vol. 48, issue 4, 614-632
Abstract:
Can history predict the escalation of future violence? This research note evaluates the use of a Recurrent Neural Network (RNN) for the Violence Early Warning System (ViEWS) Prediction Competition. Existing research on civil conflict shows violence is a persistent and recurring process, often shaping the direction of future conflicts. Building on this insight, I build a RNN model to examine how well historical patterns in conflict predict long-term escalation trends. A RNN is a simple, but powerful machine learning tool for time series forecasting due to its capacity to learn long sequences of information. I show that an RNN model can produce relatively accurate forecasts due to systematic patterns in conflict processes, consistent with existing research on “conflict traps.” The results provide important lessons for conflict forecasting and ground opportunities for using RNN models in future political science research.¿La historia puede predecir el aumento de la violencia en el futuro? Esta nota de investigación evalúa el uso de una red neuronal recurrente (Recurrent Neural Network, RNN) para la competencia de predicciones del Sistema de Alerta Temprana de Violencia (Violence Early Warning System, ViEWS). Las investigaciones existentes sobre los conflictos civiles demuestran que la violencia es un proceso persistente y recurrente que, a menudo, da forma a la dirección de futuros conflictos. Con base en esta percepción, elaboro un modelo de RNN para examinar la eficacia de los patrones históricos de los conflictos al momento de predecir tendencias a largo plazo. La RNN es una herramienta de aprendizaje automático sencilla, pero poderosa, para la predicción de series temporales debido a su capacidad para aprender secuencias extensas de información. Los resultados demuestran que el modelo genera pronósticos relativamente precisos en los Estados débiles y fallidos, lo cual coincide con las investigaciones existentes sobre las “trampas de conflictos.” No obstante, el modelo presenta dificultades para predecir nuevos conflictos civiles; esto es coincidente con las teorías informativas sobre el inicio de conflictos. Los resultados brindan lecciones importantes para la predicción de conflictos y demuestran oportunidades para las aplicaciones de RNN en futuras investigaciones sobre ciencias políticas.L’histoire peut-elle permettre de prédire l’escalade future de la violence ? Cet exposé de recherche évalue l’utilization d’un Réseau de neurones récurrents pour le concours de prédiction ViEWS (Violence early-warning system, système d’alerte précoce sur la violence). Des recherches existantes sur les conflits civils montrent que la violence est un processus persistant et récurrent qui façonne souvent l’orientation des conflits futurs. Je me suis appuyé sur cette idée pour développer un modèle de réseau de neurones récurrents dans l’objectif d’examiner à quel point les schémas historiques des conflits pouvaient permettre de prédire des tendances à long terme. Un réseau de neurones récurrents est un outil de machine learning simple mais puissant pour la prévision de séries chronologiques du fait de sa capacité à apprendre de longues séquences d’informations. Les résultats montrent que ce modèle produit des prévisions relativement précises pour les États faibles et défaillants qui sont cohérentes avec les recherches existantes sur les « pièges des conflits ». Il est difficile de prédire les nouveaux conflits civils avec ce modèle, ce qui est cohérent avec les théories informationnelles sur le déclenchement des conflits. Ces résultats permettent de tirer d’importants enseignements pour la prévision des conflits et démontrent des opportunités d’applications des réseaux de neurones récurrents dans les futures recherches en sciences politiques.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03050629.2022.2016736 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:ginixx:v:48:y:2022:i:4:p:614-632
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GINI20
DOI: 10.1080/03050629.2022.2016736
Access Statistics for this article
International Interactions is currently edited by Michael Colaresi and Gerald Schneider
More articles in International Interactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().