Influence functions of some depth functions, and application to depth-weighted L-statistics
Xin Dang,
Robert Serfling and
Weihua Zhou
Journal of Nonparametric Statistics, 2009, vol. 21, issue 1, 49-66
Abstract:
Depth functions are increasingly being used in building nonparametric outlier detectors and in constructing useful nonparametric statistics such as depth-weighted L-statistics (DL-statistics). Robustness of a depth function is an essential property for such applications. Here, robustness of three key depth functions, spatial, simplicial, and generalised Tukey, is explored via the influence function (IF) approach. For all three depths, the IFs are derived and found to be bounded, an important robustness property, and are applied to evaluate two other robustness features, gross error sensitivity and local shift sensitivity. These IFs are also used as components of the IFs of associated DL-statistics, for which through a standard approach consistency and asymptotic normality are then derived. In turn, the asymptotic normality is applied to obtain asymptotic relative efficiencies (ARE). For spatial depth, two forms of weight function suggested in the recent literature are considered and AREs in comparison with the mean are obtained. For all three depths and one of these weight functions, finite sample REs are obtained by simulation under normal, contaminated normal, and heavy-tailed t distributions. As a technical tool of general interest, needed here with the simplicial depth, the IF of a general U-statistic is derived.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485250802447981 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:21:y:2009:i:1:p:49-66
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485250802447981
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().