EconPapers    
Economics at your fingertips  
 

Robust group non-convex estimations for high-dimensional partially linear models

Mingqiu Wang and Guo-Liang Tian

Journal of Nonparametric Statistics, 2016, vol. 28, issue 1, 49-67

Abstract: High-dimensional data with a group structure of variables arise always in many contemporary statistical modelling problems. Heavy-tailed errors or outliers in the response often exist in these data. We consider robust group selection for partially linear models when the number of covariates can be larger than the sample size. The non-convex penalty function is applied to achieve both goals of variable selection and estimation in the linear part simultaneously, and we use polynomial splines to estimate the nonparametric component. Under regular conditions, we show that the robust estimator enjoys the oracle property. Simulation studies demonstrate the performance of the proposed method with samples of moderate size. The analysis of a real example illustrates that our method works well.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2015.1112009 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:1:p:49-67

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2015.1112009

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:28:y:2016:i:1:p:49-67