Composite empirical likelihood for multisample clustered data
Jiahua Chen,
Pengfei Li,
Yukun Liu and
James V. Zidek
Journal of Nonparametric Statistics, 2021, vol. 33, issue 1, 60-81
Abstract:
In many applications, data cluster. Failing to take the cluster structure into consideration generally leads to underestimated variances of point estimators and inflated type I errors in hypothesis tests. Many circumstance-dependent approaches have been developed to handle clustered data. A working covariance matrix may be used in generalised estimating equations. One may throw out the cluster structure and use only the cluster means, or explicitly model the cluster structure. Our interest is the case where multiple samples of clustered data are collected, and the population quantiles are particularly important. We develop a composite empirical likelihood for clustered data under a density ratio model. This approach avoids parametric assumptions on the population distributions or the cluster structure. It efficiently utilises the common features of the multiple populations and the exchangeability of the cluster members. We also develop a cluster-based bootstrap method to provide valid variance estimation and to control the type I errors. We examine the performance of the proposed method through simulation experiments and illustrate its usage via a real-world example.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2021.1914337 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:33:y:2021:i:1:p:60-81
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2021.1914337
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().