EconPapers    
Economics at your fingertips  
 

Penalised estimation of partially linear additive zero-inflated Bernoulli regression models

Minggen Lu, Chin-Shang Li and Karla D. Wagner

Journal of Nonparametric Statistics, 2024, vol. 36, issue 3, 863-890

Abstract: We develop a practical and computationally efficient penalised estimation approach for partially linear additive models to zero-inflated binary outcome data. To facilitate estimation, B-splines are employed to approximate unknown nonparametric components. A two-stage iterative expectation-maximisation (EM) algorithm is proposed to calculate penalised spline estimates. The large-sample properties such as the uniform convergence and the optimal rate of convergence for functional estimators, and the asymptotic normality and efficiency for regression coefficient estimators are established. Further, two variance-covariance estimation approaches are proposed to provide reliable Wald-type inference for regression coefficients. We conducted an extensive Monte Carlo study to evaluate the numerical properties of the proposed penalised methodology and compare it to the competing spline method [Li and Lu. ‘Semiparametric Zero-Inflated Bernoulli Regression with Applications’, Journal of Applied Statistics, 49, 2845–2869]. The methodology is further illustrated by an egocentric network study.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2023.2275056 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:36:y:2024:i:3:p:863-890

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2023.2275056

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:36:y:2024:i:3:p:863-890