HAC Corrections for Strongly Autocorrelated Time Series
Ulrich K. Müller
Journal of Business & Economic Statistics, 2014, vol. 32, issue 3, 311-322
Abstract:
Applied work routinely relies on heteroscedasticity and autocorrelation consistent (HAC) standard errors when conducting inference in a time series setting. As is well known, however, these corrections perform poorly in small samples under pronounced autocorrelations. In this article, I first provide a review of popular methods to clarify the reasons for this failure. I then derive inference that remains valid under a specific form of strong dependence. In particular, I assume that the long-run properties can be approximated by a stationary Gaussian AR(1) model, with coefficient arbitrarily close to one. In this setting, I derive tests that come close to maximizing a weighted average power criterion. Small sample simulations show these tests to perform well, also in a regression context.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.931238 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:32:y:2014:i:3:p:311-322
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2014.931238
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().