EconPapers    
Economics at your fingertips  
 

Efficient Augmented Inverse Probability Weighted Estimation in Missing Data Problems

Jing Qin, Biao Zhang and Denis H.Y. Leung

Journal of Business & Economic Statistics, 2017, vol. 35, issue 1, 86-97

Abstract: When analyzing data with missing data, a commonly used method is the inverse probability weighting (IPW) method, which reweights estimating equations with propensity scores. The popularity of the IPW method is due to its simplicity. However, it is often being criticized for being inefficient because most of the information from the incomplete observations is not used. Alternatively, the regression method is known to be efficient but is nonrobust to the misspecification of the regression function. In this article, we propose a novel way of optimally combining the propensity score function and the regression model. The resulting estimating equation enjoys the properties of robustness against misspecification of either the propensity score or the regression function, as well as being locally semiparametric efficient. We demonstrate analytically situations where our method leads to a more efficient estimator than some of its competitors. In a simulation study, we show the new method compares favorably with its competitors in finite samples. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1058266 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:1:p:86-97

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2015.1058266

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:35:y:2017:i:1:p:86-97