EconPapers    
Economics at your fingertips  
 

System Estimation of Panel Data Models Under Long-Range Dependence

Yunus Emre Ergemen

Journal of Business & Economic Statistics, 2019, vol. 37, issue 1, 13-26

Abstract: A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed using conditional-sum-of-squares criteria based on projected series by which latent characteristics are proxied. Resulting estimates are consistent and asymptotically normal at standard parametric rates. A simulation study provides reliability on the estimation method. The method is then applied to the long-run relationship between debt and GDP. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1255217 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:37:y:2019:i:1:p:13-26

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2016.1255217

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:37:y:2019:i:1:p:13-26