Semiparametric GARCH via Bayesian Model Averaging
Wilson Ye Chen and
Richard H. Gerlach
Journal of Business & Economic Statistics, 2021, vol. 39, issue 2, 437-452
Abstract:
As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). Here, a new class of functional coefficient semiparametric volatility models is proposed, where the news impact function is allowed to be any smooth function. The ability of the proposed model to estimate volatility is studied and compared to the well-known parametric proposals, in both a simulation study and an empirical study with real financial market data. The news impact function is estimated using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo sampling algorithm. Using simulations it is shown that the proposed flexible semiparametric model is able to learn the shape of the news impact function very effectively, from observed data. When applied to real financial time series, the proposed model suggests that news impact functions have quite different shapes over different asset types, but a consistent shape within the same asset class. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1668796 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:39:y:2021:i:2:p:437-452
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2019.1668796
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().