EconPapers    
Economics at your fingertips  
 

A Neural Phillips Curve and a Deep Output Gap

Philippe Goulet Coulombe

Journal of Business & Economic Statistics, 2025, vol. 43, issue 3, 669-683

Abstract: Many problems plague empirical Phillips curves (PCs). Among them is the hurdle that the two key components, inflation expectations and the output gap, are both unobserved. Traditional remedies include proxying for the absentees or extracting them via assumptions-heavy filtering procedures. I propose an alternative route: a Hemisphere Neural Network (HNN) whose architecture yields a final layer where components can be interpreted as latent states within a Neural PC. First, HNN conducts the supervised estimation of nonlinearities that arise when translating a high-dimensional set of observed regressors into latent states. Second, forecasts are economically interpretable. Among other findings, the contribution of real activity to inflation appears understated in traditional PCs. In contrast, HNN captures the 2021 upswing in inflation and attributes it to a large positive output gap starting from late 2020. The unique path of HNN’s gap comes from dispensing with unemployment and GDP in favor of an amalgam of nonlinearly processed alternative tightness indicators.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2024.2421279 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:43:y:2025:i:3:p:669-683

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2024.2421279

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-07-02
Handle: RePEc:taf:jnlbes:v:43:y:2025:i:3:p:669-683