SCAD-Penalized Least Absolute Deviation Regression in High-Dimensional Models
Mingqiu Wang,
Lixin Song and
Guo-liang Tian
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 12, 2452-2472
Abstract:
When outliers and/or heavy-tailed errors exist in linear models, the least absolute deviation (LAD) regression is a robust alternative to the ordinary least squares regression. Existing variable-selection methods in linear models based on LAD regression either only consider the finite number of predictors or lack the oracle property associated with the estimator. In this article, we focus on the variable selection via LAD regression with a diverging number of parameters. The rate of convergence of the LAD estimator with the smoothly clipped absolute deviation (SCAD) penalty function is established. Furthermore, we demonstrate that, under certain regularity conditions, the penalized estimator with a properly selected tuning parameter enjoys the oracle property. In addition, the rank correlation screening method originally proposed by Li et al. (2011) is applied to deal with ultrahigh dimensional data. Simulation studies are conducted for revealing the finite sample performance of the estimator. We further illustrate the proposed methodology by a real example.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.781643 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:12:p:2452-2472
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.781643
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().