Recursive kernel estimate of the conditional quantile for functional ergodic data
Fatima Benziadi,
Ali Laksaci and
Fethallah Tebboune
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 11, 3097-3113
Abstract:
In this article, we study the recursive kernel estimator of the conditional quantile of a scalar response variable Y given a random variable (rv) X taking values in a semi-metric space. Two estimators are considered. While the first one is given by inverting the double-kernel estimate of the conditional distribution function, the second estimator is obtained by using the robust approach. We establish the almost complete consistency of these estimates when the observations are sampled from a functional ergodic process. Finally, a simulation study is carried out to illustrate the finite sample performance of these estimators.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.901364 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:11:p:3097-3113
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.901364
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().