EconPapers    
Economics at your fingertips  
 

Recursive kernel estimate of the conditional quantile for functional ergodic data

Fatima Benziadi, Ali Laksaci and Fethallah Tebboune

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 11, 3097-3113

Abstract: In this article, we study the recursive kernel estimator of the conditional quantile of a scalar response variable Y given a random variable (rv) X taking values in a semi-metric space. Two estimators are considered. While the first one is given by inverting the double-kernel estimate of the conditional distribution function, the second estimator is obtained by using the robust approach. We establish the almost complete consistency of these estimates when the observations are sampled from a functional ergodic process. Finally, a simulation study is carried out to illustrate the finite sample performance of these estimators.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.901364 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:11:p:3097-3113

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2014.901364

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:11:p:3097-3113