Markov switching component GARCH model: Stability and forecasting
N. Alemohammad,
S. Rezakhah and
S. H. Alizadeh
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 15, 4332-4348
Abstract:
This paper introduces an extension of the Markov switching GARCH model where the volatility in each state is a convex combination of two different GARCH components with time varying weights. This model has the dynamic behavior to capture the variants of shocks. The asymptotic behavior of the second moment is investigated and an appropriate upper bound for it is evaluated. Using the Bayesian method via Gibbs sampling algorithm, a dynamic method for the estimation of the parameters is proposed. Finally, we illustrate the efficiency of the model by simulation and also by considering two different set of empirical financial data. We show that this model provides much better forecasts of the volatility than the Markov switching GARCH model.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.841934 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:15:p:4332-4348
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.841934
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().