Shrinkage and LASSO strategies in high-dimensional heteroscedastic models
Sévérien Nkurunziza,
Marwan Al-Momani and
Eric Yu Yin Lin
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 15, 4454-4470
Abstract:
In this paper, we consider the estimation problem of the parameter vector in the linear regression model with heteroscedastic errors. First, under heteroscedastic errors, we study the performance of shrinkage-type estimators and their performance as compared to theunrestricted and restricted least squares estimators. In order to accommodate the heteroscedastic structure, we generalize an identity which is useful in deriving the risk function. Thanks to the established identity, we prove that shrinkage estimators dominate the unrestricted estimator. Finally, we explore the performance of high-dimensional heteroscedastic regression estimator as compared to classical LASSO and shrinkage estimators.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.921305 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:15:p:4454-4470
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.921305
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().