Modeling bivariate survival data using shared inverse Gaussian frailty model
David D. Hanagal and
Susmita M. Bhambure
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 17, 4969-4987
Abstract:
The shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of a random factor (frailty) and the baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and the distribution of frailty. In this paper, we consider inverse Gaussian distribution as frailty distribution and three different baseline distributions, namely the generalized Rayleigh, the weighted exponential, and the extended Weibull distributions. With these three baseline distributions, we propose three different inverse Gaussian shared frailty models. We also compare these models with the models where the above-mentioned distributions are considered without frailty. We develop the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. A search of the literature suggests that currently no work has been done for these three baseline distributions with a shared inverse Gaussian frailty so far. We also apply these three models by using a real-life bivariate survival data set of McGilchrist and Aisbett (1991) related to the kidney infection data and a better model is suggested for the data using the Bayesian model selection criteria.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.901380 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:17:p:4969-4987
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.901380
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().