Adaptive optimal scaling of Metropolis–Hastings algorithms using the Robbins–Monro process
P. H. Garthwaite,
Y. Fan and
S. A. Sisson
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 17, 5098-5111
Abstract:
We present an adaptive method for the automatic scaling of random-walk Metropolis–Hastings algorithms, which quickly and robustly identifies the scaling factor that yields a specified overall sampler acceptance probability. Our method relies on the use of the Robbins–Monro search process, whose performance is determined by an unknown steplength constant. Based on theoretical considerations we give a simple estimator of this constant for Gaussian proposal distributions. The effectiveness of our method is demonstrated with both simulated and real data examples.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.936562 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:17:p:5098-5111
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.936562
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().