Uniformly asymptotic behavior for the tail probability of discounted aggregate claims in the time-dependent risk model with upper tail asymptotically independent claims
Xijun Liu and
Qingwu Gao
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 18, 5341-5354
Abstract:
In this paper, we consider the tail behavior of discounted aggregate claims in a dependent risk model with constant interest force, in which the claim sizes are of upper tail asymptotic independence structure, and the claim size and its corresponding inter-claim time satisfy a certain dependence structure described by a conditional tail probability of the claim size given the inter-claim time before the claim occurs. For the case that the claim size distribution belongs to the intersection of long-tailed distribution class and dominant variation class, we obtain an asymptotic formula, which holds uniformly for all times in a finite interval. Moreover, we prove that if the claim size distribution belongs to the consistent variation class, the formula holds uniformly for all times in an infinite interval.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.942431 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:18:p:5341-5354
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.942431
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().