Estimation of the offspring mean in a branching process with non stationary immigration
I. Rahimov
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 19, 5619-5627
Abstract:
In the paper, we consider a natural estimator of the offspring mean of a branching process with non stationary immigration based on observation of population sizes and number of immigrating individuals to each generation. We demonstrate that using a central limit theorem for multiple sums of dependent random variables it is possible to derive asymptotic distributions for the estimator without prior knowledge about the behavior (criticality) of the reproduction process. Before the three cases of criticality have been considered separately. Assuming that the immigration mean and variance vary regularly, conditions guaranteeing the strong consistency of the proposed estimator is also derived.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.948200 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:19:p:5619-5627
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.948200
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().