Estimation in a bivariate integer-valued autoregressive process
Aleksandar S. Nastić,
Miroslav M. Ristić and
Predrag M. Popović
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 19, 5660-5678
Abstract:
A bivariate integer-valued autoregressive time series model is presented. The model structure is based on binomial thinning. The unconditional and conditional first and second moments are considered. Correlation structure of marginal processes is shown to be analogous to the ARMA(2, 1) model. Some estimation methods such as the Yule–Walker and conditional least squares are considered and the asymptotic distributions of the obtained estimators are derived. Comparison between bivariate model with binomial thinning and bivariate model with negative binomial thinning is given.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.948203 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:19:p:5660-5678
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.948203
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().