Contingency tables with fuzzy information
S. M. Taheri,
G. Hesamian and
R. Viertl
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 20, 5906-5917
Abstract:
This paper extends the classical methods of analysis of a two-way contingency table to the fuzzy environment for two cases: (1) when the available sample of observations is reported as imprecise data, and (2) the case in which we prefer to categorize the variables based on linguistic terms rather than as crisp quantities. For this purpose, the α-cuts approach is used to extend the usual concepts of the test statistic and p-value to the fuzzy test statistic and fuzzy p-value. In addition, some measures of association are extended to the fuzzy version in order to evaluate the dependence in such contingency tables. Some practical examples are provided to explain the applicability of the proposed methods in real-world problems.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.953688 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:20:p:5906-5917
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.953688
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().