Goodness-of-link tests for multivariate regression models
José M. R. Murteira
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 24, 7367-7375
Abstract:
This note presents an approximation to multivariate regression models which is obtained from a first-order series expansion of the multivariate link function. The proposed approach yields a variable-addition approximation of regression models that enables a multivariate generalization of the well-known goodness-of-link specification test, available for univariate generalized linear models. Application of this general methodology is illustrated with models of multinomial discrete choice and multivariate fractional data, in which context it is shown to lead to well-established approximation and testing procedures.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.980518 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:24:p:7367-7375
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.980518
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().