EconPapers    
Economics at your fingertips  
 

The Weibull–Dagum distribution: Properties and applications

M. H. Tahir, Gauss M. Cordeiro, M. Mansoor, M. Zubair and Morad Alizadeh

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 24, 7376-7398

Abstract: In this article, we define a new lifetime model called the Weibull–Dagum distribution. The proposed model is based on the Weibull–G class. It can also be defined by a simple transformation of the Weibull random variable. Its density function is very flexible and can be symmetrical, left-skewed, right-skewed, and reversed-J shaped. It has constant, increasing, decreasing, upside-down bathtub, bathtub, and reversed-J shaped hazard rate. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments, and probability weighted moments. We also provide explicit expressions for the Rényi and q-entropies. We derive the density function of the order statistics as a mixture of Dagum densities. We use maximum likelihood to estimate the model parameters and illustrate the potentiality of the new model by means of a simulation study and two applications to real data. In fact, the proposed model outperforms the beta-Dagum, McDonald–Dagum, and Dagum models in these applications.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.983610 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:24:p:7376-7398

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2014.983610

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:24:p:7376-7398